当前位置:manbetx体育在线 > manbetx体育在线 > manbetx体育在线

很急!在线等答案!!关于纳米材料的制备!

2019-12-29

  我的本科论文是关于纳米ZnO的制备,目前所用的几种方法,如水热法,直接沉淀法等,那么用这些方法是怎么样保证得出的产品是纳米级的呢???很急!在线等答案!...

  我的本科论文是关于纳米ZnO的制备,目前所用的几种方法,如水热法,直接沉淀法等,那么用这些方法是怎么样保证得出的产品是纳米级的呢???很急!在线等答案!

  直接沉淀法可以说一下,控制结晶的条件而已,要温度,浓度等等,我同学在做,但不是一两句说得清。

  展开全部纳米粉体的制备目前主要有三种分类方法:第一种是根据原料的聚集状态分为固相法、液相法和气相法;第二种是按操作方式分为干法和湿法;第三种按制备原理分为物理法、化学法。这里重点介绍第三种分类方法。2.1物理法物理法即采用光、电技术使材料在真空或惰性气氛环境下蒸发或利用机械力研磨,然后使原子或分子结合形成纳米颗粒。此法通常对设备的要求很高,且消耗大量的能源。2.1.1气体冷凝法

  性气体原子碰撞而失去能量,经冷凝后形成单个纳米颗粒。最后在液氮冷却棒上聚集起来,用聚四氟乙烯刮刀刮下并收集。纳米合金可通过同时蒸发数种金属得到;纳米氧化物可在蒸发过程中在真空室中通过纯氧氧化得到。这种方法的优点是制备的纳米粉体比较洁净。

  同时施加适当的电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从表面沉积下来。粒子的大小及尺寸分布主要取决于两电极间的电压、电流和气体的压力。此方法可制备多种高熔点和低熔点的纳米金属及多元化的化合物纳米颗粒。李良飞等利用磁控溅射法在非织造布表面进行ZnO镀层处理,制备出颗粒均匀、细致、稳定的纳米ZnO薄膜,分析了不同溅射条件下对ZnO薄膜表面形态的影响。

  的是减小离子的尺寸、固态合金化、混合或融合以及改变离子的形状。采用球磨方法,控制适当的条件可以得到纯元素、合金或复合材料的纳米粒子。由于该过程引入了大量的粉末颗粒应变、缺陷以及纳米级的微结构,其制备过程的热力学和动力学不同于普通的固态反应过程,有可能制备出常规法难以制备的新型纳米材料。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀。某某等利用球磨法合成了不同粒径的纳米ZnO。Lin等利用球磨法合成了不同退火温度下的磁性纳米Fe3O4,得到的粒子粒径范围在12.5-46nm,对应的饱和磁化强度范围为52-66.4nm,而矫顽力在22.2nm时达到最大值。Goya用球磨法

  在有机载液中合成了一系列不同窄分布的磁性粒子,所有的粒子在室温下表现出超顺磁性,而且温度为10-20K时磁性消失。Zduji?等在空气氛围中利用高能球磨

  适当的沉淀剂,控制合适的条件使金属离子生成各种形式的沉淀物,再将此沉淀物干燥或煅烧形成纳米粉体。其优点是可以广泛用以合成单一或复合氧化物超细粉体,反应过程简单,成本低,便于工业化生产。缺点是沉淀为胶状物,水洗、过滤困难;沉淀剂不易除去;若使用能够分解除去的氨水、碳酸铵作沉淀剂,许多离子可形成可溶性络合离子,沉淀过程中各种成分不易分离;水洗时要损失部分沉淀物等。根据沉淀的方式可分为直接沉淀法和均相沉淀法。

  析出,将阴离子从沉淀中除去,再经干燥或煅烧制得纳米粉体。优点是操作简单易行,对设备、技术要求不高,产品纯度高,制备成本低,但是所得产品粒度较大,粒径分布较宽。常用的沉淀剂有NH3·H2O、NaOH、Na2CO3、(NH4)2CO3、(NH4)2C2O4等。Ciobanua、Wang等利用直接沉淀法制备了纳米ZnO,并考察了其电学和光学性能。Jiang等用共沉淀法合成了窄分布的Fe3O4纳米粒子,并在其表面包覆了高分子,考察了其生物特性。Thapa等利用简单而又具应用前景的沉淀法合成了Fe3O4纳米粒子,发现当粒子的粒径在10nm以下时饱和磁化强度得到了提高,而且当粒子的粒径在10nm时有最佳的磁性,且可适用于各种应用,另外还利用这种尺度的磁性粒子合成了硅油基磁性流体。

  地产生出来的方法。在这个方法中,加入到溶液中的沉淀剂不立刻与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个过程中均匀地释放出来,从而使沉淀在整个溶液中缓慢均匀地产生,这样可以减少晶粒的团聚,得到纯度高的纳米粉体。均相沉淀法常用的沉淀剂有六次甲基四胺和尿素等。石西昌等[21]人采用均匀沉淀法,在250mL平底三口瓶中加入一定浓度的Zn(NO3)2250mL、尿素50mL,待达到反应温度时,加入一定量表面活性剂,反应3-5h,得到前驱体,再将前驱体过滤、洗涤、蒸发、干燥,573-773K左右在马弗炉中焙烧3h,制备得到了平均粒径在40-60nm左右的纳米氧化锌。

  物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体的制备方法。此方法首先在室温或低温下制备可在较低温度下分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。此方法具有纯度高,工艺简单,可缩短制备时间等特点。王疆瑛等[23]人报道了用Zn(OAc)2·2H2O与8-羟基喹琳按1:2摩尔比混合均匀,室温(20±2)oC条件下研磨2h,反应体系的颜色逐渐由白色变为黄色。反应后的产物置于真空干燥器中自然干燥至恒重得8-羟基喹琳合锌。将固相产品在400oC下热分解2h,得到平均粒径为10nm的ZnO粉体。景苏等[24]人采用室温固相法,通过将FeCl3·6H2O和KOH以摩尔比1:3混合,于室温下研磨30min,然后用蒸馏水超声清洗,合成纳米FeOOH,将其在一定温度下焙烧一段时间就得到了纳米氧化铁粉体。徐宏等[25]人则通过将原料NaOH与FeCl2按一定的摩尔比于研钵中充分研磨,并加入适量的吐温80使湿固相反应充分。混合物经洗涤、抽滤后在室温下晾干即得纳米Fe3O4粉体。2.2.3水热法

  物在水溶液或蒸汽等流体中反应生成目标产物,再经分离和热处理得到纳米粉体。反应温度一般在100-400oC,压力从0.1MPa到几十乃至几百MPa。水热法为各种前驱物的反应、结晶提供了一个常压条件无法得到的物理化学环境。粉体的形成经历了溶解-结晶的过程。该方法原料易得,成本相对较低,可以制备出纯度高、晶型好、分散性好以及大小可控的纳米颗粒,但是对设备的要求较为苛刻。现在在水热法的基础上,以有机溶剂(如苯、甲酸、乙醇等)代替水,采用溶剂热反应来制备纳米粉体是水热法的一种重大改进。另外近年来还发展出电化学水热法以及微波水热合成法。前者将水热法与电场相结合,而后者以微波加热水热反应体系。Ni等以氯化锌和氢氧化钾为原料,利用水热法合成了ZnO纳米管,一般大小为50nm×250nm,讨论了一些影响纳米管的形态和光学性能的因素。杨华等

  Fe(OMOE)2于MOE中回流4h,然后在磁搅拌下加入一定量MOE与H2O的混合溶液,得到的白色悬浮物在水热釜中反应得到了不同粒径的Fe3O4纳米颗粒。

  溶胶-凝胶法指金属醇盐或无机盐水解成溶胶,然后使溶胶凝胶化,再将凝胶干燥煅烧后得到纳米粉体。溶胶-凝胶法反应具有条件温和、产品成分均匀、纯度

  较高、粒径分布较窄等特点,尤其可以制备传统方法所不能或难制备的产物,而且反应物种多,过程易控制,适于氧化物和过渡金属族化合物的制备。采用溶胶-凝胶法不仅可制备纳米颗粒,还可制备纳米薄膜和块体。但是也存在一些缺点,如原料成本较贵;制备周期较长;烧结性差,干燥收缩性大等。Vafaee等以三羟乙基胺为表面活性剂,采用溶胶-凝胶法合成了粒径为3-4nm的球形ZnO,与其他方法制得的纳米ZnO相比,具有更好的光致发光现象。Mondelaers等在醋酸盐-柠檬酸盐的溶胶中合成了纳米ZnO,具有窄分布的特点。Tang等在300oC以溶胶-凝胶方法合成了具有纳米结构的磁性Fe3O4薄膜,且薄膜表面均一无裂缝,所加磁场为0-1.9T时,表现出磁光效应。Xu等利用溶胶-凝胶法在真空退火的条件下合成磁性Fe3O4纳米粒子,磁性粒子的大小、饱和磁化强度以及矫顽力都随着合成温度的增加而增大,而且Fe3O4粒子的相态随着不同的反应温度和气氛而变化。

  不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相,这样可使成核、生长过程局限在一个微小的球形液滴内,从而可形成球形颗粒,又避免了颗粒之间的进一步团聚。微乳液法实验装置简单、能耗低、操作简单;所得的纳米粒子粒径分布窄,而且单分散性、界面性和稳定性好;与其他方法相比具有粒径易于控制,适用面广等优点。Singhai等以Zn-DEHSS为表面活性剂在乙醇-油微乳液体系中合成了纳米ZnO粉体,并将制得的纳米粉体用于变阻器上,找到一个最低临界电压。崔若梅等[34]人利用适当比例的非离子表面活性剂吐温80、环己烷、水自发生成W/O型微乳液制得了25-30nm的ZnO粉体。Arturo等在